Mathematical Finance

MAE, Module 4, 2024-2025

Vyacheslav Gorovoy, PhD

NES

vgorovoy[at]nes.ru

Course information

Course Website: https://my.nes.ru Instructor's Office Hours: by assignment TAs: TBD

Course description

The course can be considered as a continuation of the Derivatives course with the goal to provide training in financial mathematics, pricing complex derivatives and numerical methods. It consists of the following parts:

- The first part of the course is the theoretical introduction to stochastic calculus and asset pricing based on an equivalent martingale measure approach.
- The second part is an introduction to the Monte Carlo method for pricing derivatives using some of the models, which are widely employed in the industry.
- The third part will cover interest rates models and their application for pricing fixed-income products.

The course is heavily using python, all lecture notes, hws and a project are in Jupyter notebook format.

Course requirements, grading, and attendance policies

Prerequisites:

- 1. Derivatives
- 2. Probability theory
- 3. Python

Grading:

3 homework problem sets	45% (15% each)
Class Participation	10%
Project	45%

Course contents

- Equivalent Martingale Measure (Lecture notes L1)
 - Market price of the risk
 - Choice of numeraire
 - Girsanov theorem
 - Siegel's paradox
- Stochastic calculus (Lecture notes L2)
 - Stochastic and Diffusion processes
 - Ito's Stochastic Calculus
 - The backward and forward Kolmogorov equations
 - The Feynman-Kac formula
- Multi-asset derivatives (Lecture notes L2)
 - Modeling correlation between financial assets
 - Quanto. Application: Hedging risk exposure of oil company

- Models beyond Black-Scholes (Lecture notes L3)
 - Local volatility
 - Stochastic volatility
 - Models with jumps
- Monte Carlo (MC) simulation (Lecture notes L4)
 - Principles of Monte Carlo
 - Pricing Derivatives by MC
 - Variance Reduction
 - \circ $\;$ Simulation of the CIR Process $\;$
 - Heston model.
- Spectral methods in derivative pricing (based on paper: by Fang and others. A Novel Pricing Method for European Options Based on Fourier-Cosine Series Expansions
 - Fourier expansion method
 - Application to Heston Model
- Path-dependent options (Lecture notes L5)
 - \circ Asian options
 - Barrier options
- Interest rates derivatives. (Lecture notes L6)
 - Option on futures. Black's model.
 - \circ $\,$ Callable and putable bonds.
 - Interest rate swaps
 - $\circ \quad \text{Caps and floors} \quad$
- Interest rates models (Lecture notes L7)
 - Short rate models
 - BGM model
- Structured products (SP) (Lecture notes L8)
 - Capital protected
 - Yield enhancement
 - Fixed Income structured notes. Range accrual and Step-up notes
 - Exotic

- ML in Finance
 - Bermudan and American option pricing using NN
 - Volatility surface dynamics based on ML

Description of course methodology

- Lectures
- Homeworks
- Quizzes

Sample tasks for course evaluation

Callable Bond:

Consider a 5-year fixed rate bond with principle of \$100 and coupon 4% per year payable semiannually. This bond is callable at 2-year time with a strike price of \$100. Assuming that the quoted volatility for the forward yield over a period from 2 to 5 years is 20% and flat yield curve at 4% compounded continuously, compute the current price of the above callable bond.

Course materials

Textbooks and materials

- Lecture notes
- John Hull, "Options, Futures, and Other Derivatives"
- C.W. Oosterlee and Lech Grzelak. Mathematical Modeling and Computations in Finance
- Paper: Fang, Fang and Oosterlee, Kees. A Novel Pricing Method for European Options Based on Fourier-Cosine Series Expansions

Academic integrity policy

Cheating, plagiarism, and any other violations of academic ethics at NES are not tolerated.